On Differentiable Functionals
نویسنده
چکیده
منابع مشابه
A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملMultiple critical points for non-differentiable parametrized functionals and applications to differential inclusions
In this paper we deal with a class of non-differentiable functionals defined on a real reflexive Banach space X and depending on a real parameter of the form Eλ(u) = L(u)− (J1 ◦T )(u)−λ(J2 ◦ S)(u), where L : X → R is a sequentially weakly lower semicontinuous C functional, J1 : Y → R, J2 : Z → R (Y, Z Banach spaces) are two locally Lipschitz functionals, T : X → Y , S : X → Z are linear and com...
متن کاملNon-differentiable functionals and singular sets of minima Fonctionnelles non-différentiable et l’ensembles singulier des minima
We provide bounds for the Hausdorff dimension of the singular set of minima of functionals of the type ∫ Ω F (x, v, Dv), where F is only Hölder continuous with respect to the variables (x, v).
متن کاملA Semismooth Newton Method for Tikhonov Functionals with Sparsity Constraints
Minimization problems in l for Tikhonov functionals with sparsity constraints are considered. Sparsity of the solution is ensured by a weighted l penalty term. The necessary and sufficient condition for optimality is shown to be slantly differentiable (Newton differentiable), hence a semismooth Newton method is applicable. Local superlinear convergence of this method is proved. Numerical exampl...
متن کامل(ps)-weak Lower Semicontinuity in One-dimension: a Necessary and Sufficient Condition
The (PS)-weak lower semicontinuity property has been introduced in Vasiliu and Yan [10] for general continuously differentiable functionals on Sobolev spaces in connection with the Ekeland variational principle and the direct method of calculus of variations. In this paper, we give a necessary and sufficient condition of this property for the functionals in one-dimension of the simple type I(u)...
متن کامل